APPLICATION OF PATCHING DIAGRAMS TO SOME QUESTIONS ABOUT PROJECTIVE MODULES

Amit ROY
School of Mathematics, Tata Institute of Fundamental Research, Bombay 400005, India

Communicated by H. Bass
Received I June 1981

1. Introduction

In this paper we prove some results for a type of cartesian square of rings

called patching diagrams (see Section 2 for definition) and give two applications.
Section 2 is essentially a résumé of facts intended for later use.
A natural question in the context of a patching diagram is the following: given projective modules P and Q over A such that they are isomorphic over B and C (after change of rings), when can we say that P and Q are isomorphic? In Section 3 we give some sufficient conditions for this to happen.

In Section 4 we give applications of the results of Section 3 to questions about projective modules over polynomial rings. The first application (Theorem 4.1) is an extension of a result of Kang who proved it under a finite normalization hypothesis on the ground ring. Our method is to reduce to Kang's case via a suitable patching diagram. As a second application (Theorem 4.2) we prove that for an analytically normal local domain R of dimension 2, the natural map $K_{0}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow$ $K_{0}\left(\hat{R}\left[X_{1}, \ldots, X_{n}\right]\right)$ is an isomorphism.

For definitions and results pertaining to algebraic K-theory we refer the reader to [1].

Throughout this paper we shall be concerned only with commutative rings and finitely generated modules. The rings are not assumed to be noetherian in Sections 2 and 3.

My sincere thanks are due to S.M. Bhatwadekar for several helpful conversations leading to many clarifications and to a shortening of the proof of Theorem 4.1.

2. Patching diagrams

Let $f: A \rightarrow B$ be a homomorphism of rings and let s be an element of A such that
(i) s is a non-zero-divisor in A,
(ii) $f(s)$ is a non-zero-divisor in B,
(iii) f induces an isomorphism $A / s A \xrightarrow{\boldsymbol{\Longrightarrow}} B / f(s) B$.

The commutative diagram of rings

resulting from a situation as above will be called a patching diagram, borrowing the term from [7].

The conditions (i), (ii), and (iii) imply that f induces an isomorphism $A / s^{n} A \xrightarrow{\approx}$ $B / f\left(s^{n}\right) B$ for all n, and that the diagram (2.1) is cartesian.

In this section and the next we shall work over a fixed patching diagram (2.1) and results will be stated in the context of this diagram without always explicitly mentioning so.

We begin by recalling a basic construction as given in Section 2 of [6]. Given a triple (P_{1}, σ, P_{2}), where P_{1} and P_{2} are finitely generated projective modules over A_{s} and B respectively, and $\sigma:\left(P_{2}\right)_{s} \rightarrow B_{s} \otimes_{A_{s}} P_{1}$ is a B_{s}-isomorphism, form the fibre product

$$
M=M\left(P_{1}, \sigma, P_{2}\right)=\left\{\left(p_{1}, p_{2}\right) \in P_{1} \times P_{2} \mid 1 \otimes p_{1}=\sigma\left(p_{2} / 1\right)\right\}
$$

Then M has an obvious A-module structure. Moreover: (1) M is a finitely generated projective A-module; (2) the projections from M induce isomorphisms $M_{s} \rightarrow P_{1}$ and $B \otimes_{A} M \rightarrow P_{2}$; (3) if P is a finitely generated projective A-module and σ denotes the standard isomorphism $\left(B \otimes_{A} P\right)_{s} \rightarrow B_{s} \otimes_{A_{s}} P_{s}$, then P is canonically isomorphic to $M\left(P_{s}, \sigma, B \otimes_{A} P\right)$.

Proofs for the three statements above can be obtained by carrying over to our situation the proofs of similar statements in Section 2 of [6] noting two facts. The first is that Lemma 2.4 of [6] holds under the weaker hypothesis that the matrix ($a_{\alpha \beta}$) be a product of two matrices σ_{1} and σ_{2} such that σ_{i} is the image under j_{i} of an invertible matrix over Λ_{i}. The second fact is a result of Vorst which we quote:

Proposition 2.2. ([11], Lemma 2.4 (i)). Given any $\alpha \in E_{r}\left(B_{s}\right)$, with $r \geq 3$, there exist $\beta \in \operatorname{Im}\left(E_{r}\left(A_{s}\right) \rightarrow E_{r}\left(B_{s}\right)\right)$ and $\gamma \in \operatorname{Im}\left(E_{r}(B) \rightarrow E_{r}\left(B_{s}\right)\right)$ such that $\alpha=\beta \gamma$.

As a corollary to the discussion above, we have:
2.3. If Q is a projective B-module such that Q_{s} is $B_{s}-f r e e$, then Q is of the form $B \otimes_{A} P$ for some projective A-module P.

This result also follows from Lemma 4 of [4].
At this point we make a convention that if P is a projective A-module, we shall identify $B_{s} \otimes_{A_{s}} P_{s}$ and $\left(B \otimes_{A} P\right)_{s}$ with $B_{s} \otimes_{A} P$. Accordingly P can be described as $M\left(P_{s}, 1, B \otimes \otimes_{A} P\right)$. If Q is another projective A-module and there are isomorphisms $\alpha: Q_{s} \rightarrow P_{s}$ and $\beta: B \otimes_{A} Q \rightarrow B \otimes_{A} P$, then it is easily seen that Q is isomorphic to $M\left(P_{s},(1 \otimes \alpha) \beta_{s}^{-1}, B \otimes_{A} P\right)$. Further, Q is isomorphic to P if $1 \otimes \alpha=\beta_{s}$. Actually we have a necessary and sufficient condition for a module of the type $M\left(P_{s}, \sigma, B \otimes_{A} P\right)$ to be isomorphic to P and we record it as:

Remark 2.4. Let σ be an automorphism of the B_{s}-module $B_{s} \otimes_{A} P$. Then $M\left(P_{s}, \sigma, B \otimes_{A} P\right)$ is isomorphic to P if and only if there exist automorphisms σ_{1} of P_{s} and σ_{2} of $B \otimes_{A} P$ such that $\sigma=\left(1 \otimes \sigma_{1}\right)\left(\sigma_{2}\right)_{s}$.

The proof is not difficult.
Next we observe that for a patching diagram the associated diagram of the categories of projective modules is E-surjective in the sense of Definition 3.3 in Chapter VII of [1] (this can be checked using Proposition 2.2 stated earlier). As a special case of Theorem 4.3 of the same chapter we have:

Theorem 2.5. The patching diagram (2.1) gives rise to exact sequences
(E) $\quad K_{1}(A) \rightarrow K_{1}\left(A_{s}\right) \oplus K_{1}(B) \rightarrow K_{1}\left(B_{s}\right) \rightarrow K_{0}(A)$
and

$$
\rightarrow K_{0}\left(A_{s}\right) \oplus K_{0}(B) \rightarrow K_{0}\left(B_{s}\right)
$$

$$
\begin{aligned}
&\left(E^{\prime}\right) \quad 0 \rightarrow U(A) \rightarrow U\left(A_{s}\right) \oplus U(B) \rightarrow U\left(B_{s}\right) \rightarrow \operatorname{Pic}(A) \\
& \rightarrow \operatorname{Pic}\left(A_{s}\right) \oplus \operatorname{Pic}(B) \rightarrow \operatorname{Pic}\left(B_{s}\right) .
\end{aligned}
$$

Further, there is an epimorphism of exact sequences det : $(E) \rightarrow\left(E^{\prime}\right)$.
For the definition of 'det' see Section 3 in Chapter IX of [1].

3. Factorization of automorphisms

Recall that in this section too we shall be working over a fixed patching diagram (2.1).

We saw in Remark 2.4 that the question of isomorphism of two projective A modules amounts to finding factorizations of automorphisms over B_{s} into two parts which come from A_{s} and B. In this section we prove a result (Proposition 3.1) which
describes a type of factorizable automorphisms and we derive from that a criterion for isomorphism of A-modules (Proposition 3.4). Proposition 3.1 is an analogue of Vorst's lemma, cited as Proposition 2.2, in a more general set up.

Proposition 3.1. Let P be a finitely presented A-module and let σ be an automorphism of $B_{s} \otimes_{A} P$ which is a product of automorphisms of the type $1+c(1 \otimes \theta)$, where θ is an endomorphism of P_{s} with $\theta^{2}=0$ and $c \in B_{s}$. Then there exist automorphisms σ_{1} of P_{s} and σ_{2} of $B \otimes_{A} P$ such that $\sigma=\left(1 \otimes \sigma_{1}\right)\left(\sigma_{2}\right)_{s}$. Moreover, σ_{1} and σ_{2} can be chosen to be products of unipotent automorphisms of P_{s} and $B \otimes_{A}$ P respectively.

Proof. Write $\sigma=\gamma_{1} \cdots \gamma_{m}$, where $\gamma_{i}=1+c_{i}\left(1 \otimes \theta_{i}\right)$ with $c_{i} \in B_{s}$ and θ_{i} an endomorphism of P_{s} with $\theta_{i}^{2}=0$. Let $\delta_{i}=\gamma_{i+1} \cdots \gamma_{m}$ for $1 \leq i \leq m-1$ and $\delta_{m}=1$. Choose n sufficiently large so that there exists an endomorphism ϕ_{i} of $B \otimes_{A} P$ such that $\phi_{i}^{2}=0$ and $\left(\phi_{i}\right)_{s}=s^{n} \delta_{i}^{-1}\left(1 \otimes \theta_{i}\right) \delta_{i}$ (writing s instead of $f(s)$). It follows from the canonical isomorphism $\operatorname{End}_{B}\left(B \otimes_{A} P\right)_{s} \xlongequal{\approx} \operatorname{End}_{B_{s}}\left(B_{s} \otimes_{A} P\right)$ that such an n exists. Let $c_{i}=b_{i}^{\prime} / s^{k}$ with $b_{i}^{\prime} \in B$ for $1 \leq i \leq m$. From the isomorphism $A / s^{n+k} A \rightarrow B / s^{n+k} B$ induced by f we derive that $b_{i}^{\prime}=s^{n+k} b_{i}+f\left(a_{i}\right)$ with $b_{i} \in B$ and $a_{i} \in A$. So $c_{i}=s^{n} b_{i} / 1+f\left(a_{i} / s^{k}\right)$. Since $\theta_{i}^{2}=0$ we have

$$
\gamma_{i}=\left(1+f\left(a_{i} / s^{k}\right)\left(1 \otimes \theta_{i}\right)\right)\left(1+\left(s^{n} b_{i} / 1\right)\left(1 \otimes \theta_{i}\right)\right)
$$

Denote the automorphism $\left(1+\left(a_{1} / s^{k}\right) \theta_{1}\right) \cdots\left(1+\left(a_{m} / s^{k}\right) \theta_{m}\right)$ of P_{s} by σ_{1}. It is easily checked that

$$
\begin{aligned}
\sigma & =\left(1 \otimes \sigma_{1}\right) \delta_{m}^{-1}\left(1+\left(s^{n} b_{m} / 1\right)\left(1 \otimes \theta_{m}\right)\right) \delta_{m} \cdots \delta_{1}^{-1}\left(1+\left(s^{n} b_{1} / 1\right)\left(1 \otimes \theta_{1}\right)\right) \delta_{1} \\
& =\left(1 \otimes \sigma_{1}\right)\left(1+\left(b_{m} / 1\right)\left(\phi_{m}\right)_{s}\right) \cdots\left(1+\left(b_{1} / 1\right)\left(\phi_{1}\right)_{s}\right) .
\end{aligned}
$$

Setting $\sigma_{2}=\left(1+b_{m} \phi_{m}\right) \cdots\left(1+b_{1} \phi_{1}\right)$ we are through.
Corollary 3.2. The conclusion of the proposition above holds if P_{s} is free, say with a basis $\left\{e_{1}, \ldots, e_{r}\right\}$, and σ is in $E_{r}\left(B_{s}\right)$, considered as a matrix with respect to the basis $\left\{1 \otimes e_{1}, \ldots, 1 \otimes e_{r}\right\}$ of $B_{s} \otimes_{A_{s}}$ P. Further, in this case σ_{1} can be chosen so that it is in $E_{r}\left(A_{s}\right)$, viewed as a matrix with respect to the basis $\left\{e_{1}, \ldots, e_{r}\right\}$.

In what follows we shall use Goldman's definition of determinant (see [2]). If a projective A-module P has a unimodular element, then $\operatorname{det}:$ End $_{A}(P) \rightarrow A$ is surjective. For, let $P=A p \oplus P_{1}$ with p unimodular and let a be any element of A. Then the endomorphism of P which is identity on P_{1} and sends p to $a p$ has determinant a.

The next result is Lemma 4.1 of [3] stated in the context of a patching diagram.
Proposition 3.3. Let P be a projective A-module of constant rank r, σ an automorphism of the B_{s}-module $B_{s} \otimes_{A} P$ and let Q denote the fibre product A-module $M\left(P_{s}, \sigma, B \otimes_{A} P\right)$. If $\wedge^{\prime} P \approx \Lambda^{\prime} Q$, then there exist units $u \in A_{s}$ and $v \in B$ such that $\operatorname{det} \sigma=(1 \otimes u)(u / 1)$.

Proof. Let $[P, \sigma]$ denote the class of σ in $K_{1}\left(B_{s}\right)$ and let $[P]$ and $[Q]$ denote the classes of P and Q in $K_{0}(A)$. Consider the commutative diagram

with exact row. We have $\operatorname{det}([P, \sigma])=\operatorname{det} \sigma$ and $\left(\operatorname{det}{ }^{\circ} \partial\right)([P, \sigma])=\operatorname{det}([Q]-[P])=0$ because $\Lambda^{\prime} P \approx \Lambda^{\prime} Q$. So $\operatorname{det} \sigma \in \operatorname{Im} h$.

Proposition 3.4. Let $\mathrm{SL}_{r}\left(B_{s}\right)=E_{r}\left(B_{s}\right)$ for some r. Let P and Q be projective A modules of rank r such that
(i) $\wedge P \approx \wedge Q$,
(ii) P_{s} and Q_{s} are free over A_{s},
(iii) $B \otimes_{A} P \approx B \otimes_{A} Q$ and $B \otimes_{A} Q$ has a unimodular element.

Then $P \approx Q$.
Proof. Let $\alpha: P_{s} \rightarrow Q_{s}$ and $\beta: B \otimes_{A} P \rightarrow B \otimes_{A} Q$ be isomorphisms over A_{s} and B respectively. By Proposition $3.3 \operatorname{det}\left((1 \otimes \alpha) \beta_{s}^{-1}\right)=(1 \otimes u)(v / 1)$ with $u \in U\left(A_{s}\right)$ and $v \in U(B)$. Since Q_{s} and $B \otimes_{A} Q$ have unimodular elements, there are automorphisms γ of Q_{s} and δ of $B \otimes_{A} Q$ such that det $\gamma=u$ and $\operatorname{det} \delta=v$. Replacing α by $\gamma^{-1} \alpha$ and β by $\delta \beta$ we may assume that $\operatorname{det}\left((1 \otimes \alpha) \beta_{s}^{-1}\right)=1$. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be a basis of Q_{s}. Then $(1 \otimes \alpha) \beta_{s}^{-1}$, regarded as a matrix with respect to the basis $\left\{1 \otimes e_{1}, \ldots, 1 \otimes e_{r}\right\}$ of $B_{s} \otimes_{A_{s}} Q_{s}$, belongs to $E_{r}\left(B_{s}\right)$. It follows from Remark 2.4 and Corollary 3.2 that $P \approx Q$.

4. Projective modules over polynomial and Laurent polynomial rings

Here we apply the results of the previous section to two situations (Theorems 4.1 and 4.2).

Recall that if R is artinian and A denotes the ring $R\left[X_{1}, \ldots, X_{n}, Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}\right]$, then projective A-modules of constant rank are free (use Corollary 1.4 of [10] after going modulo nilpotent elements). Further, it follows from Corollary 7.11 of [9] that $\mathrm{SL}_{r}(A)=E_{r}(A)$ for $r \geq 3$. Here again it suffices to do the checking modulo nilpotent elements.

Theorem 4.1. Let R be a noetherian ring of dimension $1, A=R\left[X_{1}, \ldots, X_{n}, Y_{1}^{ \pm 1}, \ldots\right.$, $\left.Y_{m}^{ \pm 1}\right]$ and P a projective A-module. If rank $P \geqq 3$, then P is a direct sum of a free A-module and a projective A-module of rank ≤ 1.

If we assume $R_{\text {red }}$ has finite normalization, then the theorem follows from the methods of Section 4 of [3]: the steps leading to a proof of Corollary 4.5 go through for the Laurent polynomial case as well.

Proof of Theorem 4.1. We may decompose R as a finite product of indecomposable rings, if necessary, and assume P to be of constant rank, say r. Let \bar{P} denote the A-module $\wedge^{r} P \otimes A^{r-1}$. We shall show that $P \approx \tilde{P}$. It is sufficient to do this modulo the nilradical of A. Therefore we assume A (equivalently R) to be reduced.

Let S denote the set of non-zero-divisors of R. Then R_{S} is a finite product of fields. So the projective A_{S}-modules P_{S} and \tilde{P}_{S} are free. Choose $s \in S$ so that P_{s} and \bar{P}_{s} are free.

Let \hat{R} denote the s-adic completion of R. We claim that \hat{R} is semi-local. To see this first note that $R_{1+s R}$ is semi-local because it is 1-dimensional and contains a non-zero-divisor (for instance s) in its Jacobson radical. Now \hat{R} is the completion of $R_{1+s R}$ and hence is semi-local. Since $\hat{R}_{\text {red }}$ has finite normalization, it follows from what we said after the statement of Theorem 4.1 , that $\hat{A} \otimes_{A} P \approx \hat{A} \otimes_{A} \tilde{P}$, where \hat{A} denotes $\hat{R} \otimes_{R} A$. Now \hat{R}_{s} being artinian, we have $\mathrm{SL}_{r}\left(\hat{A}_{s}\right)=E_{r}\left(\hat{A}_{s}\right)$. Applying Proposition 3.4 to the patching diagram

and the A-modules P and \tilde{P} we get $P \approx \tilde{P}$.
Theorem 4.2. Let R be an analytically normal local domain of dimension 2, let $A=R\left[X_{1}, \ldots, X_{n}\right]$ and let \hat{A} denote $\hat{R}\left[X_{1}, \ldots, X_{n}\right]$. Then
(i) every projective \hat{A}-module is of the form $\hat{A} \otimes_{A} P$ for some projective A module P,
(ii) a projective A-module P of rank ≥ 3 is free if $\hat{A} \otimes_{A} P$ is free. In particular, the canonical map $K_{0}(A) \rightarrow K_{0}(\hat{A})$ is an isomorphism.

Proof. Let (s, t) be a system of parameters of R and let R^{\prime} denote the s-adic completion of R. Then the t-adic completion of R^{\prime} is its completion as a local ring and equals \hat{R} (this can be seen using Corollary 5 on p. 171 of [5]). It follows from faithful flatness of $R^{\prime} \rightarrow \hat{R}$ and normality of \hat{R} that R^{\prime} is normal. Therefore, to prove the theorem, it suffices to prove the following: if $R \subset \tilde{R}$ are normal local domains of dimension 2 such that $R / s R \rightarrow \tilde{R} / s \bar{R}$ is an isomorphism for some s in the maximal ideal of R, then the conlcusions of Theorem 4.2 hold with 'cap' replaced by 'tilde'.

Proof of (i). Let \bar{P} be a projective \tilde{A}-module where $\tilde{A}=\tilde{R}\left[X_{1}, \ldots, X_{n}\right]$. We have a
patching diagram

So, in view of 2.3 , it suffices to show that \tilde{P}_{s} is \tilde{A}_{s}-free. Since \tilde{R}_{s} is a Dedekind domain, $\tilde{P_{s}}$ is isomorphic to $\tilde{A_{s}} \otimes_{\tilde{R}_{s}} P_{0}$ for some projective $\tilde{R_{s}}$-module P_{0} ([8], Theorem $\left.4^{\prime}\right)$. But P_{0} is nothing but $\tilde{P}_{s} /\left(X_{1}, \ldots, X_{n}\right) \tilde{P}_{s}$ and the latter is free, being a localization of the free \tilde{R}-module $\tilde{P} /\left(X_{1}, \ldots, X_{n}\right) \tilde{P}$.

Proof of (ii). Let P be a projective A-module of rank $r \geq 3$ such that $\bar{A} \otimes_{A} P$ is \bar{A} free. We know by the argument given above, that P_{s} is A_{s}-free. Fix an isomorphism $\alpha^{\prime}: \bar{P} \rightarrow \bar{A}^{r}$ with 'bar' denoting ' $\bmod \left(X_{1}, \ldots, X_{n}\right)$ '. Choose isomorphisms $\alpha_{1}: P_{s} \rightarrow A_{s}^{r}$ and $\alpha_{2}: \bar{A} \otimes_{A} P \rightarrow \tilde{A}^{r}$ such that $\bar{\alpha}_{1}=\alpha_{s}^{\prime}$ and $\bar{\alpha}_{2}=1 \otimes \alpha^{\prime}$. To see that this can be done, let β denote some isomorphism $P_{s} \rightarrow A_{s}^{r}$. Lift the automorphism $\alpha_{s}^{\prime} \bar{\beta}^{-1}$ of \bar{A}_{s}^{r} to an automorphism γ of A_{s}^{r} and set $\alpha_{1}=\gamma \beta$. Similarly for α_{2}.

The automorphism $\left(1 \otimes \alpha_{1}\right)\left(\alpha_{2}\right)_{s}^{-1}$ of \tilde{A}_{s}^{r}, viewed as a matrix with respect to the canonical basis, is of determinant 1 since it is identity $\bmod \left(X_{1}, \ldots, X_{n}\right)$; hence it belongs to $E_{r}\left(\tilde{A}_{s}\right)$ by Corollary 6.5 of [9] because \tilde{R}_{s} is a Dedekind domain. Applying Remark 2.4 and Corollary 3.2 to the patching diagram (4.3) we conclude that $P \approx A^{r}$.

References

[1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
[2] O. Goldman, Determinants in projective modules, Nagoya Math. J. 18 (1961) 27-36.
[3] M-C. Kang, Projective modules over some polynomial rings, J. Algebra 59 (1979) 65-76.
[4] H. Lindel, Projektive Moduln über Polynomringen $A\left[T_{1}, \ldots, T_{m}\right]$ mit einem regulären Grundring A, Manuscripta Math. 23 (1978) 143-154.
[5] H. Matsumura, Commutative Algebra (Benjamin, New York, 1970).
[6] J. Milnor, Introduction to Algebraic K-theory (Princeton Univ. Press, Princeton, 197I).
[7] M. Ojanguren, A splitting theorem for quadratic forms, preprint.
[8] D. Quillen, Projective modules over polynomial rings, Inventiones Math. 36 (1976) 167-171.
[9] A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izvestija, 11 (1977) 221-238 (English translation).
[10] R.G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978) 111-120.
[11] T. Vorst, The general linear group of polynomial rings over regular rings, preprint.

