APPLICATION OF PATCHING DIAGRAMS TO SOME QUESTIONS ABOUT PROJECTIVE MODULES

Amit ROY

School of Mathematics, Tata Institute of Fundamental Research, Bombay 400005, India

Communicated by H. Bass Received 1 June 1981

1. Introduction

In this paper we prove some results for a type of cartesian square of rings

called patching diagrams (see Section 2 for definition) and give two applications. Section 2 is essentially a résumé of facts intended for later use.

A natural question in the context of a patching diagram is the following: given projective modules P and Q over A such that they are isomorphic over B and C (after change of rings), when can we say that P and Q are isomorphic? In Section 3 we give some sufficient conditions for this to happen.

In Section 4 we give applications of the results of Section 3 to questions about projective modules over polynomial rings. The first application (Theorem 4.1) is an extension of a result of Kang who proved it under a finite normalization hypothesis on the ground ring. Our method is to reduce to Kang's case via a suitable patching diagram. As a second application (Theorem 4.2) we prove that for an analytically normal local domain R of dimension 2, the natural map $K_0(R[X_1, ..., X_n]) \rightarrow$ $K_0(\hat{R}[X_1, ..., X_n])$ is an isomorphism.

For definitions and results pertaining to algebraic K-theory we refer the reader to [1].

Throughout this paper we shall be concerned only with commutative rings and finitely generated modules. The rings are not assumed to be noetherian in Sections 2 and 3.

My sincere thanks are due to S.M. Bhatwadekar for several helpful conversations leading to many clarifications and to a shortening of the proof of Theorem 4.1.

2. Patching diagrams

Let $f: A \rightarrow B$ be a homomorphism of rings and let s be an element of A such that (i) s is a non-zero-divisor in A,

(ii) f(s) is a non-zero-divisor in B,

(iii) f induces an isomorphism $A/sA \xrightarrow{\sim} B/f(s)B$.

The commutative diagram of rings

$$\begin{array}{ccc}
A & & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
A_s & \xrightarrow{f_s} & B_s
\end{array}$$
(2.1)

resulting from a situation as above will be called a *patching diagram*, borrowing the term from [7].

The conditions (i), (ii), and (iii) imply that f induces an isomorphism $A/s^n A \stackrel{\sim}{\to} B/f(s^n)B$ for all n, and that the diagram (2.1) is cartesian.

In this section and the next we shall work over a fixed patching diagram (2.1) and results will be stated in the context of this diagram without always explicitly mentioning so.

We begin by recalling a basic construction as given in Section 2 of [6]. Given a triple (P_1, σ, P_2) , where P_1 and P_2 are finitely generated projective modules over A_s and B respectively, and $\sigma: (P_2)_s \rightarrow B_s \otimes_{A_s} P_1$ is a B_s -isomorphism, form the fibre product

$$M = M(P_1, \sigma, P_2) = \{(p_1, p_2) \in P_1 \times P_2 \mid 1 \otimes p_1 = \sigma(p_2/1)\}$$

Then *M* has an obvious *A*-module structure. Moreover: (1) *M* is a finitely generated projective *A*-module; (2) the projections from *M* induce isomorphisms $M_s \rightarrow P_1$ and $B \otimes_A M \rightarrow P_2$; (3) if *P* is a finitely generated projective *A*-module and σ denotes the standard isomorphism $(B \otimes_A P)_s \rightarrow B_s \otimes_{A_s} P_s$, then *P* is canonically isomorphic to $M(P_s, \sigma, B \otimes_A P)$.

Proofs for the three statements above can be obtained by carrying over to our situation the proofs of similar statements in Section 2 of [6] noting two facts. The first is that Lemma 2.4 of [6] holds under the weaker hypothesis that the matrix $(a_{\alpha\beta})$ be a product of two matrices σ_1 and σ_2 such that σ_i is the image under j_i of an invertible matrix over Λ_i . The second fact is a result of Vorst which we quote:

Proposition 2.2. ([11], Lemma 2.4 (i)). Given any $\alpha \in E_r(B_s)$, with $r \ge 3$, there exist $\beta \in \text{Im}(E_r(A_s) \to E_r(B_s))$ and $\gamma \in \text{Im}(E_r(B) \to E_r(B_s))$ such that $\alpha = \beta \gamma$.

As a corollary to the discussion above, we have:

2.3. If Q is a projective B-module such that Q_s is B_s -free, then Q is of the form $B \otimes_A P$ for some projective A-module P.

This result also follows from Lemma 4 of [4].

At this point we make a convention that if P is a projective A-module, we shall identify $B_s \otimes_{A_s} P_s$ and $(B \otimes_A P)_s$ with $B_s \otimes_A P$. Accordingly P can be described as $M(P_s, 1, B \otimes_A P)$. If Q is another projective A-module and there are isomorphisms $\alpha: Q_s \rightarrow P_s$ and $\beta: B \otimes_A Q \rightarrow B \otimes_A P$, then it is easily seen that Q is isomorphic to $M(P_s, (1 \otimes \alpha)\beta_s^{-1}, B \otimes_A P)$. Further, Q is isomorphic to P if $1 \otimes \alpha = \beta_s$. Actually we have a necessary and sufficient condition for a module of the type $M(P_s, \sigma, B \otimes_A P)$ to be isomorphic to P and we record it as:

Remark 2.4. Let σ be an automorphism of the B_s -module $B_s \otimes_A P$. Then $M(P_s, \sigma, B \otimes_A P)$ is isomorphic to P if and only if there exist automorphisms σ_1 of P_s and σ_2 of $B \otimes_A P$ such that $\sigma = (1 \otimes \sigma_1)(\sigma_2)_s$.

The proof is not difficult.

Next we observe that for a patching diagram the associated diagram of the categories of projective modules is *E-surjective* in the sense of Definition 3.3 in Chapter VII of [1] (this can be checked using Proposition 2.2 stated earlier). As a special case of Theorem 4.3 of the same chapter we have:

Theorem 2.5. The patching diagram (2.1) gives rise to exact sequences

$$(E) \quad K_1(A) \to K_1(A_s) \oplus K_1(B) \to K_1(B_s) \to K_0(A)$$
$$\to K_0(A_s) \oplus K_0(B) \to K_0(B_s)$$

and

$$(E') \quad 0 \to U(A) \to U(A_s) \oplus U(B) \to U(B_s) \to \operatorname{Pic}(A) \\ \to \operatorname{Pic}(A_s) \oplus \operatorname{Pic}(B) \to \operatorname{Pic}(B_s).$$

Further, there is an epimorphism of exact sequences det : $(E) \rightarrow (E')$.

For the definition of 'det' see Section 3 in Chapter IX of [1].

3. Factorization of automorphisms

Recall that in this section too we shall be working over a fixed patching diagram (2.1).

We saw in Remark 2.4 that the question of isomorphism of two projective Amodules amounts to finding factorizations of automorphisms over B_s into two parts which come from A_s and B. In this section we prove a result (Proposition 3.1) which A. Roy

describes a type of factorizable automorphisms and we derive from that a criterion for isomorphism of A-modules (Proposition 3.4). Proposition 3.1 is an analogue of Vorst's lemma, cited as Proposition 2.2, in a more general set up.

Proposition 3.1. Let P be a finitely presented A-module and let σ be an automorphism of $B_s \otimes_A P$ which is a product of automorphisms of the type $1 + c(1 \otimes \theta)$, where θ is an endomorphism of P_s with $\theta^2 = 0$ and $c \in B_s$. Then there exist automorphisms σ_1 of P_s and σ_2 of $B \otimes_A P$ such that $\sigma = (1 \otimes \sigma_1)(\sigma_2)_s$. Moreover, σ_1 and σ_2 can be chosen to be products of unipotent automorphisms of P_s and $B \otimes_A P$ respectively.

Proof. Write $\sigma = \gamma_1 \cdots \gamma_m$, where $\gamma_i = 1 + c_i(1 \otimes \theta_i)$ with $c_i \in B_s$ and θ_i an endomorphism of P_s with $\theta_i^2 = 0$. Let $\delta_i = \gamma_{i+1} \cdots \gamma_m$ for $1 \le i \le m-1$ and $\delta_m = 1$. Choose *n* sufficiently large so that there exists an endomorphism ϕ_i of $B \otimes_A P$ such that $\phi_i^2 = 0$ and $(\phi_i)_s = s^n \delta_i^{-1} (1 \otimes \theta_i) \delta_i$ (writing *s* instead of f(s)). It follows from the canonical isomorphism $\text{End}_B(B \otimes_A P)_s \xrightarrow{\approx} \text{End}_{B_s}(B_s \otimes_A P)$ that such an *n* exists. Let $c_i = b'_i/s^k$ with $b'_i \in B$ for $1 \le i \le m$. From the isomorphism $A/s^{n+k}A \to B/s^{n+k}B$ induced by *f* we derive that $b'_i = s^{n+k}b_i + f(a_i)$ with $b_i \in B$ and $a_i \in A$. So $c_i = s^n b_i/1 + f(a_i/s^k)$. Since $\theta_i^2 = 0$ we have

$$\gamma_i = (1 + f(a_i/s^k)(1 \otimes \theta_i))(1 + (s^n b_i/1)(1 \otimes \theta_i)).$$

Denote the automorphism $(1 + (a_1/s^k)\theta_1) \cdots (1 + (a_m/s^k)\theta_m)$ of P_s by σ_1 . It is easily checked that

$$\sigma = (1 \otimes \sigma_1)\delta_m^{-1}(1 + (s^n b_m/1)(1 \otimes \theta_m))\delta_m \cdots \delta_1^{-1}(1 + (s^n b_1/1)(1 \otimes \theta_1))\delta_1$$

= $(1 \otimes \sigma_1)(1 + (b_m/1)(\phi_m)_s) \cdots (1 + (b_1/1)(\phi_1)_s).$

Setting $\sigma_2 = (1 + b_m \phi_m) \cdots (1 + b_1 \phi_1)$ we are through.

Corollary 3.2. The conclusion of the proposition above holds if P_s is free, say with a basis $\{e_1, \ldots, e_r\}$, and σ is in $E_r(B_s)$, considered as a matrix with respect to the basis $\{1 \otimes e_1, \ldots, 1 \otimes e_r\}$ of $B_s \otimes_{A_s} P$. Further, in this case σ_1 can be chosen so that it is in $E_r(A_s)$, viewed as a matrix with respect to the basis $\{e_1, \ldots, e_r\}$.

In what follows we shall use Goldman's definition of determinant (see [2]). If a projective A-module P has a unimodular element, then det: $\operatorname{End}_A(P) \to A$ is surjective. For, let $P = Ap \oplus P_1$ with p unimodular and let a be any element of A. Then the endomorphism of P which is identity on P_1 and sends p to ap has determinant a.

The next result is Lemma 4.1 of [3] stated in the context of a patching diagram.

Proposition 3.3. Let P be a projective A-module of constant rank r, σ an automorphism of the B_s -module $B_s \otimes_A P$ and let Q denote the fibre product A-module $M(P_s, \sigma, B \otimes_A P)$. If $\bigwedge' P \approx \bigwedge' Q$, then there exist units $u \in A_s$ and $v \in B$ such that det $\sigma = (1 \otimes u)(v/1)$.

Proof. Let $[P, \sigma]$ denote the class of σ in $K_1(B_s)$ and let [P] and [Q] denote the classes of P and Q in $K_0(A)$. Consider the commutative diagram

with exact row. We have $\det([P, \sigma]) = \det \sigma$ and $(\det \circ \partial)([P, \sigma]) = \det([Q] - [P]) = 0$ because $\bigwedge' P \approx \bigwedge' Q$. So det $\sigma \in \operatorname{Im} h$.

Proposition 3.4. Let $SL_r(B_s) = E_r(B_s)$ for some r. Let P and Q be projective A-modules of rank r such that

(i) $\bigwedge P \approx \bigwedge Q$,

(ii) P_s and Q_s are free over A_s ,

(iii) $B \otimes_A P \approx B \otimes_A Q$ and $B \otimes_A Q$ has a unimodular element. Then $P \approx Q$.

Proof. Let $\alpha: P_s \to Q_s$ and $\beta: B \otimes_A P \to B \otimes_A Q$ be isomorphisms over A_s and B respectively. By Proposition 3.3 det $((1 \otimes \alpha)\beta_s^{-1}) = (1 \otimes u)(v/1)$ with $u \in U(A_s)$ and $v \in U(B)$. Since Q_s and $B \otimes_A Q$ have unimodular elements, there are automorphisms γ of Q_s and δ of $B \otimes_A Q$ such that det $\gamma = u$ and det $\delta = v$. Replacing α by $\gamma^{-1}\alpha$ and β by $\delta\beta$ we may assume that det $((1 \otimes \alpha)\beta_s^{-1}) = 1$. Let $\{e_1, \dots, e_r\}$ be a basis of Q_s . Then $(1 \otimes \alpha)\beta_s^{-1}$, regarded as a matrix with respect to the basis $\{1 \otimes e_1, \dots, 1 \otimes e_r\}$ of $B_s \otimes_{A_s} Q_s$, belongs to $E_r(B_s)$. It follows from Remark 2.4 and Corollary 3.2 that $P \approx Q$.

4. Projective modules over polynomial and Laurent polynomial rings

Here we apply the results of the previous section to two situations (Theorems 4.1 and 4.2).

Recall that if R is artinian and A denotes the ring $R[X_1, ..., X_n, Y_1^{\pm 1}, ..., Y_m^{\pm 1}]$, then projective A-modules of *constant* rank are free (use Corollary 1.4 of [10] after going modulo nilpotent elements). Further, it follows from Corollary 7.11 of [9] that $SL_r(A) = E_r(A)$ for $r \ge 3$. Here again it suffices to do the checking modulo nilpotent elements.

Theorem 4.1. Let R be a noetherian ring of dimension 1, $A = R[X_1, ..., X_n, Y_1^{\pm 1}, ..., Y_m^{\pm 1}]$ and P a projective A-module. If rank $P \ge 3$, then P is a direct sum of a free A-module and a projective A-module of rank ≤ 1 .

If we assume R_{red} has finite normalization, then the theorem follows from the methods of Section 4 of [3]: the steps leading to a proof of Corollary 4.5 go through for the Laurent polynomial case as well.

Proof of Theorem 4.1. We may decompose R as a finite product of indecomposable rings, if necessary, and assume P to be of constant rank, say r. Let \tilde{P} denote the A-module $\bigwedge^{r} P \otimes A^{r-1}$. We shall show that $P \approx \tilde{P}$. It is sufficient to do this modulo the nilradical of A. Therefore we assume A (equivalently R) to be reduced.

Let S denote the set of non-zero-divisors of R. Then R_S is a finite product of fields. So the projective A_S -modules P_S and \tilde{P}_S are free. Choose $s \in S$ so that P_s and \tilde{P}_s are free.

Let \hat{R} denote the s-adic completion of R. We claim that \hat{R} is semi-local. To see this first note that R_{1+sR} is semi-local because it is 1-dimensional and contains a nonzero-divisor (for instance s) in its Jacobson radical. Now \hat{R} is the completion of R_{1+sR} and hence is semi-local. Since \hat{R}_{red} has finite normalization, it follows from what we said after the statement of Theorem 4.1, that $\hat{A} \otimes_A P \approx \hat{A} \otimes_A \tilde{P}$, where \hat{A} denotes $\hat{R} \otimes_R A$. Now \hat{R}_s being artinian, we have $SL_r(\hat{A}_s) = E_r(\hat{A}_s)$. Applying Proposition 3.4 to the patching diagram

and the A-modules P and \tilde{P} we get $P \approx \tilde{P}$.

Theorem 4.2. Let R be an analytically normal local domain of dimension 2, let $A = R[X_1, ..., X_n]$ and let \hat{A} denote $\hat{R}[X_1, ..., X_n]$. Then

(i) every projective \hat{A} -module is of the form $\hat{A} \otimes_A P$ for some projective A-module P,

(ii) a projective A-module P of rank ≥ 3 is free if $\hat{A} \otimes_A P$ is free. In particular, the canonical map $K_0(A) \rightarrow K_0(\hat{A})$ is an isomorphism.

Proof. Let (s, t) be a system of parameters of R and let R' denote the s-adic completion of R. Then the t-adic completion of R' is its completion as a local ring and equals \hat{R} (this can be seen using Corollary 5 on p. 171 of [5]). It follows from faithful flatness of $R' \rightarrow \hat{R}$ and normality of \hat{R} that R' is normal. Therefore, to prove the theorem, it suffices to prove the following: if $R \subset \tilde{R}$ are normal local domains of dimension 2 such that $R/sR \rightarrow \tilde{R}/s\tilde{R}$ is an isomorphism for some s in the maximal ideal of R, then the conclusions of Theorem 4.2 hold with 'cap' replaced by 'tilde'.

Proof of (i). Let \tilde{P} be a projective \tilde{A} -module where $\tilde{A} = \tilde{R}[X_1, \dots, X_n]$. We have a

patching diagram

$$\begin{array}{cccc}
A & \longrightarrow & \tilde{A} \\
\downarrow & & \downarrow \\
A_{5} & \longrightarrow & \tilde{A}_{5}
\end{array} \tag{4.3}$$

So, in view of 2.3, it suffices to show that \tilde{P}_s is \tilde{A}_s -free. Since \tilde{R}_s is a Dedekind domain, \tilde{P}_s is isomorphic to $\tilde{A}_s \otimes_{\tilde{R}_s} P_0$ for some projective \tilde{R}_s -module P_0 ([8], Theorem 4'). But P_0 is nothing but $\tilde{P}_s/(X_1, ..., X_n)\tilde{P}_s$ and the latter is free, being a localization of the free \tilde{R} -module $\tilde{P}/(X_1, ..., X_n)\tilde{P}$.

Proof of (ii). Let P be a projective A-module of rank $r \ge 3$ such that $\tilde{A} \otimes_A P$ is \tilde{A} -free. We know by the argument given above, that P_s is A_s -free. Fix an isomorphism $\alpha': \tilde{P} \to \tilde{A}^r$ with 'bar' denoting 'mod $(X_1, ..., X_n)$ '. Choose isomorphisms $\alpha_1: P_s \to A_s^r$ and $\alpha_2: \tilde{A} \otimes_A P \to \tilde{A}^r$ such that $\bar{\alpha}_1 = \alpha'_s$ and $\bar{\alpha}_2 = 1 \otimes \alpha'$. To see that this can be done, let β denote some isomorphism $P_s \to A_s^r$. Lift the automorphism $\alpha'_s \bar{\beta}^{-1}$ of \bar{A}_s^r to an automorphism γ of A_s^r and set $\alpha_1 = \gamma \beta$. Similarly for α_2 .

The automorphism $(1 \otimes \alpha_1)(\alpha_2)_s^{-1}$ of \tilde{A}_s^r , viewed as a matrix with respect to the canonical basis, is of determinant 1 since it is identity $mod(X_1, ..., X_n)$; hence it belongs to $E_r(\tilde{A}_s)$ by Corollary 6.5 of [9] because \tilde{R}_s is a Dedekind domain. Applying Remark 2.4 and Corollary 3.2 to the patching diagram (4.3) we conclude that $P \approx A^r$.

References

- [1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
- [2] O. Goldman, Determinants in projective modules, Nagoya Math. J. 18 (1961) 27-36.
- [3] M-C. Kang, Projective modules over some polynomial rings, J. Algebra 59 (1979) 65-76.
- [4] H. Lindel, Projektive Moduln über Polynomringen A[T₁, ..., T_m] mit einem regulären Grundring A, Manuscripta Math. 23 (1978) 143-154.
- [5] H. Matsumura, Commutative Algebra (Benjamin, New York, 1970).
- [6] J. Milnor, Introduction to Algebraic K-theory (Princeton Univ. Press, Princeton, 1971).
- [7] M. Ojanguren, A splitting theorem for quadratic forms, preprint.
- [8] D. Quillen, Projective modules over polynomial rings, Inventiones Math. 36 (1976) 167-171.
- [9] A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR -Izvestija, 11 (1977) 221-238 (English translation).
- [10] R.G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978) 111-120.
- [11] T. Vorst, The general linear group of polynomial rings over regular rings, preprint.