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1. Introduction 

In this paper we prove some results for a type of Cartesian square of rings 

A-B 

C-D 

called patching diagrams (see Section 2 for definition) and give two applications. 
Section 2 is essentially a resume of facts intended for later use. 
A natural question in the context of a patching diagram is the following: given 

projective modules P and Q over A such that they are isomorphic over B and C 
(after change of rings), when can we say that P and Q are isomorphic? In Section 3 
we give some sufficient conditions for this to happen. 

In Section 4 we give applications of the results of Section 3 to questions about 
projective modules over polynomial rings. The first application (Theorem 4.1) is an 
extension of a result of Kang who proved it under a finite normalization hypothesis 
on the ground ring. Our method is to reduce to Kang’s case via a suitable patching 
diagram. As a second application (Theorem 4.2) we prove that for an analytically 
normal local domain R of dimension 2, the natural map &(R [X,, . . . . X,]) -+ 

Ko(R WI, . . . , X,]) is an isomorphism. 
For definitions and results pertaining to algebraic K-theory we refer the reader 

to [l]. 
Throughout this paper we shall be concerned only with commutative rings and 

finitely generated modules. The rings are not assumed to be noetherian in Sections 2 
and 3. 
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My sincere thanks are due to SM. Bhatwadekar for several helpful conversations 
leading to many clarifications and to a shortening of the proof of Theorem 4.1. 

2. Patching diagrams 

Let f :A + B be a homomorphism of rings and let s be an element of A such that 
(i) s is a non-zero-divisor in A, 

(ii) f(s) is a non-zero-divisor in B, 
(iii) f induces an isomorphism A/sA f B/f(s)B. 

The commutative diagram of rings 

f 
A-B 

I I f, 
A, - B S 

(2.1) 

resulting from a situation as above will be called a patching diagram, borrowing the 
term from (71. 

The conditions (i), (ii), and (iii) imply that f induces an isomorphism A/s”A -$ 

B/f(s”)B for all n, and that the diagram (2.1) is Cartesian. 
In this section and the next we shall work over a fixedpatching diagram (2.1) and 

results will be stated in the context of this diagram without always explicitly men- 
tioning so. 

We begin by recalling a basic construction as given in Section 2 of (61. Given a 
triple (P,, a, P2), where PI and P2 are finitely generated projective modules over A, 
and B respectively, and Q: (P&-BS OA, P, is a B,-isomorphism, form the fibre 
product 

Then M has an obvious A-module structure. Moreover: (1) M is a finitely generated 
projective A-module; (2) the projections from M induce isomorphisms M,-+P, and 
B @A M-r P2; (3) if P is a finitely generated projective A-module and o denotes the 
standard isomorphism (B & P), + BS OA, P,, then P is canonically isomorphic to 

M(P,, 0, B @A p). 

Proofs for the three statements above can be obtained by carrying over to our 
situation the proofs of similar statements in Section 2 of [6] noting two facts. The 
first is that Lemma 2.4 of [6] holds under the weaker hypothesis that the matrix 
(a,B) be a product of two matrices oI and ~7~ such that ai is the image underji of an 
invertible matrix over Ai. The second fact is a result of Vorst which we quote: 

Proposition 2.2. ([l 11, Lemma 2.4 (i)). Given any a EE,(B,), with r 13, there exist 
PE Im(E,(A,) -+E,(B,)) and YE Im(E,(B) --*E,(B,)) such that cr=fly. 
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As a corollary to the discussion above, we have: 

2.3. If Q is a projective B-module such that QS is B,-free. then Q is of the form 
B @A P for some projective A-module P. 

This result also follows from Lemma 4 of 141. 
At this point we make a convention that if P is a projective A-module, we shall 

identify B, a,_,, P, and (B @A P), with B, @A P. Accordingly P can be described as 
M(P,, 1, B @A P). If Q is another projective A-module and there are isomorphisms 
a : QS+ P, and p : B @A Q -, B @A P, then it is easily seen that Q is isomorphic to 
M(P,, (1 @ a)/l;‘, B @A P). Further, Q is isomorphic to P if 1 @ a = /I,. Actually we 
have a necessary and sufficient condition for a module of the type M(P,, a, B @A P) 
to be isomorphic to P and we record it as: 

Remark 2.4. Let o be an automorphism of the B,-module B, @A P. Then 
M(P,, a, B QA P) is isomorphic to P if and only if there exist automorphisms oI of 
P, and a2 of BOA P such that IS = (I@ CT~)(C~)~. 

The proof is not difficult. 
Next we observe that for a patching diagram the associated diagram of the 

categories of projective modules is E-surjective in the sense of Definition 3.3 in 
Chapter VII of [l] (this can be checked using Proposition 2.2 stated earlier). As a 
special case of Theorem 4.3 of the same chapter we have: 

Theorem 2.5. The patching diagram (2.1) gives rise to exact sequences 

and 

69 K,(A) -+K,(As) 0 KI(B)-+KI(&) -+Ko(A) 
+ Ko(As) 0 Ko(B) + Ko(B,) 

(E’) 0 -, U(A) -, U(A,) @ U(B) + U(B,) -, Pit(A) 

+ Pic(A,) @ Pit(B) --* Pic(B,). 

Further, there is an epimorphism of exact sequences det : (E) --) (E’). 

For the definition of ‘det’ see Section 3 in Chapter IX of [l]. 

3. Factorization of automorphisms 

Recall that in this section too we shall be working over a fixed patching diagram 
(2.1). 

We saw in Remark 2.4 that the question of isomorphism of two projective A- 
modules amounts to finding factorizations of automorphisms over B, into two parts 
which come from A, and B. In this section we prove a result (Proposition 3.1) which 
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describes a type of factorizable automorphisms and we derive from that a criterion 
for isomorphism of A-modules (Proposition 3.4). Proposition 3.1 is an analogue of 
Vorst’s lemma, cited as Proposition 2.2, in a more general set up. 

Proposition 3.1. Let P be a finitely presented A-module and let o be an automor- 
phism of B, @A P which is a product of automorphisms of the type 1 + c(1 @ 0). 
where 0 is an endomorphism of P, with 8 2 = 0 and c E B,. Then there exist automor- 
phisms crl of P, and o2 of B @A Psuch that o = (1 0 o,)(t~~)~. Moreover, ~1 and o2 
can be chosen to be products of unipotent automorphisms of P, and B @A P respec- 
tively. 

Proof. Write 0 = yI .-a ym, where yi= 1 +ci(l @ 6’i) with CiE B, and 0, an endomor- 
phism of P, with 0: = 0. Let Si = yi+ I ---y,,, for llilm-1 and &=l. Choose n 
sufficiently large so that there exists an endomorphism @i of B @A P such that @f = 0 
and (@i)s =S”6;‘( 1 @ ei)Si (writing s instead off(s)). It follows from the canonical 
isomorphism Ends(B 6JA P),z Ends,(B, aA P) that such an n exists. Let ci = bj/sk 
with b:E B for 1 pi 5 m. From the isomorphism A/s”+~A + B/s”+&B induced by f 
we derive that b: =s “+‘bi+f(ai) with bie B and aieA. SO Ci=s”bi/l + f(ai/sk). 
Since f$=O we have 

yi=(l +f(ai/sk)(l @ ei))(l +(s”bi/l)(l @I 0i)). 

Denote the automorphism (1 + (a,@)&) a.. (1 + (a,/sk)e,) of P, by oI. It is easily 
checked that 

0 =(l @ 01)6$(1 +(s”b,/l)(l @ e,m -*a &‘(I +(s”b,/l)(l @ e,w, 
=(I 0 od(l +(WlMn),)-(1 +(b~/l)(@A). 

Setting 02= (1 -t b,,&,) *a- (1 + b,@,) we are through. 

Corollary 3.2. The conclusion of the proposition above holds if P, is free, say with a 
basis {e,, . . . , e,), and CJ is in E,(B,), considered as a matrix with respect to the basis 

(1 Oe,, . . . . 10 e,} of B, @*, P. Further, in this case 6, can be chosen so that it is in 
E,(A,), viewed as a matrix with respect to the basis {e,, . . . . e,}. 

In what follows we shall use Goldman’s definition of determinant (see [2]). If a 
projective A-module P has a unimodular element, then det : End,(P) -A is surjec- 
tive. For, let P=Ap @ PI with p unimodular and let a be any element of A. Then the 
endomorphism of P which is identity on P, and sends p to ap has determinant a. 

The next result is Lemma 4.1 of [3] stated in the context of a patching diagram. 

Proposition 3.3. Let P be a projective A-module of constant rank r, IS an automor- 
phism of the B,-module B, QA P and let Q denote the fibre product A-module 
M(P,, IS, B @A P). If A’ Pi+ A’ Q, then there exist units u E A, and v E B such that 
det a=(1 @ u)(v/l). 
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Proof. Let [P, a] denote the class of cr in K,(B,) and let [P] and [Q] denote the 
classes of P and Q in &(A). Consider the commutative diagram 

KIM&) a Ko(A) 

W-4,) 0 wm ---l- W%) a Pit(A) 

with exact row. We have det([P, a]) = det o and (det oJ)([P, a]) = det([Q] - [P]) = 0 
because A’ P =A’ Q. So det o E Im h. 

Proposition 3.4. Let SL,(B,)= E,(B,) for some r. Let P and Q be projective A- 
modules of rank r such that 

(i) KP=KQ, 
(ii) P, and QS are free over A,, 

(iii) B QA P = B aA Q and B @A Q has a unimodular element. 
Then P= Q. 

Proof. Let cz : P,+ Qs and p: B @A Pd B QA Q be isomorphisms over A, and B 
respectively. By Proposition 3.3 det((1 @ cr)/3;‘) = (1 @ u)(o/l) with UE U(A,) and 
u E U(B). Since Qs and B @A Q have unimodular elements, there are automorphisms 
y of Qs and 6 of B @,_, Q such that det y = u and det 6 = u. Replacing a by y-la and p 
by SD we may assume that det((1 @ a)fl;‘) = 1. Let {ei, . . . . e,} be a basis of Qs. 
Then (1 @ a)/3;‘, regarded as a matrix with respect to the basis { 10 el, . . . . 1 @ e,} 
of B, OA, QS, belongs to E,(B,). It follows from Remark 2.4 and Corollary 3.2 that 
P=Q. 

4. Projective modules over polynomial and Laurent polynomial rings 

Here we apply the results of the previous section to two situations (Theorems 4.1 
and 4.2). 

RecallthatifRisartinianandAdenotestheringR[X,,...,X,,Y~‘,..., Y,“], then 
projective A-modules of constant rank are free (use Corollary 1.4 of [lo] after going 
modulo nilpotent elements). Further, it follows from Corollary 7.11 of [9] that 
SL,(A) = E,(A) for rz 3. Here again it suffices to do the checking modulo nilpotent 
elements. 

Theorem 4.1. Let R be a noetherian ring of dimension 1, A = R [X,, . . . , X,,, Yi’, . . . , 
Yz’] and P a projective A-module. If rank Pz 3, then P is a direct sum of a free 
A-module and a projective A-module of rank I 1. 
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If we assume Rred has finite normalization, then the theorem follows from the 
methods of Section 4 of [3]: the steps leading to a proof of Corollary 4.5 go through 
for the Laurent polynomial case as well. 

Proof of Theorem 4.1. We may decompose R as a finite product of indecompos- 
able rings, if necessary, and assume P to be of constant rank, say r. Let P denote the 
A-module A’ P@ A’-‘. We shall show that P= lj. It is sufficient to do this modulo 
the nilradical of A. Therefore we assume A (equivalently R) to be reduced. 

Let S denote the set of non-zero-divisors of R. Then Rs is a finite product of 
fields. So the projective As-modules Ps and Fs are free. Choose SE S so that PS and 
Fss are free. 

Let I? denote the s-adic completion of R. We claim that I? is semi-local. To see this 
first note that RI +sR is semi-local because it is l-dimensional and contains a non- 
zero-divisor (for instance s) in its Jacobson radical. Now I? is the completion of 
RI +sR and hence is semi-local. Since R^red has finite normalization, it follows from 
what we said after the statement of Theorem 4.1, that amA P=AaA P, where A 
denotes i? ORA. Now R^, being artinian, we have SL,(& =&(A,). Applying 
Proposition 3.4 to the patching diagram 

A-A 

A, - A S 

and the A-modules P and P we get P=p. 

Theorem 4.2. Let R be an analytically normal local domain of dimension 2, let 
A =R[X,, . . . . X,,] and let d denote R^[X,, . . . . X,,]. Then 

(i) every projective a-module is of the form A- @A P for some projective A- 
module P, 

(ii) a projective A-module P of rank L 3 is free if a aA P is free. 
In particular, the canonical map KO(A) + K,,(A) is an isomorphism. 

Proof. Let (s, t) be a system of parameters of R and let R’ denote the s-adic com- 
pletion of R. Then the t-adic completion of R’ is its completion as a local ring and 
equals I? (this can be seen using Corollary 5 on p. 171 of [5]). It follows from 
faithful flatness of R’-+d and normality of R^ that R’ is normal. Therefore, to prove 
the theorem, it suffices to prove the following: if R Cl? are normal local domains of 
dimension 2 such that R/sR -Z&l? is an isomorphism for some s in the maximal 
ideal of R, then the conlcusions of Theorem 4.2 hold with ‘cap’ replaced by ‘tilde’. 

Proof of(i). Let P be a projective A-module where A = Z?[X,, . . . ,X,,]. We have a 
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patching diagram 

A* - /i s 

So, in view of 2.3, it suffices to show that ps is As-free. Since f?s is a Dedekind 
domain, ps is isomorphic to A, @li,Pc, for some projective &module PO ([8], 
Theorem 4’). But PO is nothing but EjJ(Xt, . . . . X,)ps and the latter is free, being a 
localization of the free R-module p/(X,, . . . , X,)l? 

Proof of (ii). Let P be a projective A-module of rank rz 3 such that A @A P is A- 
free. We know by the argument given above, that P, is As-free. Fix an isomorphism 
a’:P+A’with ‘bar’ denoting ‘mod(Xt, . . . . X,)‘. Choose isomorphisms aI : P,+ AI 

and a2 :A OA P-Ar such that dt = a; and & *= 10 a’. To see that this can be done, 
let p denote some isomorphism P,+A,‘. Lift the automorphism a$-’ of Ai to an 
automorphism y of Ai and set aI = y/3. Similarly for a2. 

The automorphism (1 0 aI)(a of A;, viewed as a matrix with respect to the 
canonical basis, is of determinant 1 since it is identity mod(Xt, . . . ..I’.,); hence it 
belongs to &(A,) by Corollary 6.5 of [9] because $ is a Dedekind domain. 
Applying Remark 2.4 and Corollary 3.2 to the patching diagram (4.3) we conclude 
that P=A’. 
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